Final Exam Mathematical Physics, Prof. G. Palasantzas

- Total number of points 100
- 10 points for coming to the final exam
- Justify your answers for all problems

Problem 1 (10 points)

Show that $\lim _{\mathbf{n} \rightarrow \infty} \frac{\boldsymbol{x}^{n}}{\mathbf{n}!}=\mathbf{O}$ for all $\mathrm{x} \in(-\infty,+\infty)$

Problem 2 (15 points)

Consider the series $\sum_{n=1}^{+\infty} \frac{(-5)^{n}}{n^{5 / 2}} x^{n}$
For which values of x does the series converge?

Problem 3 (15 points)

Suppose a mass m is attached to a spring with spring constant $\mathrm{k}\left(=m \omega^{2}\right)$. If an external force $F(t)=F_{o} \cos (\omega t)$ is applied to the mass m , then its equation of motion is given by:

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)
$$

Suppose $c^{2}-4 m k<0$, then prove that the motion of the mass m is described by the general solution*:

$$
\begin{aligned}
& x(t)=e^{-(c / 2 m) t}\left[c_{1} \cos (\tilde{\omega} t)+c_{2} \sin (\tilde{\omega} t)\right]+\left(\frac{F_{o}}{c \omega}\right) \sin (\omega t) \\
& \text { with } \widetilde{\omega}=\omega \sqrt{1-(c / 2 m \omega)^{2}} \text { and } c_{1}, c_{2} \text { constants. }
\end{aligned}
$$

*You have to derive the general solution using the method of undetermined coefficients.

Problem 4 (15 points)

Find the periodic solution in complex form of the second order differential equation:

$$
\mathrm{M} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mathrm{C} \frac{\mathrm{dX}}{\mathrm{dt}}+\mathrm{KX}=\mathrm{F}(\mathrm{t})
$$

$\mathrm{F}(\mathrm{t})$ a known periodic function with period $\mathrm{T} . \mathrm{M}, \mathrm{C}$ and K are real positive constants.
To this end consider the complex Fourier series definitions $X(t)=\sum_{n=-\infty}^{+\infty} X_{n} e^{i n \omega t}$, and $F(t)=\sum_{n=-\infty}^{+\infty} F_{n} e^{\text {in } \omega t}$ with $\omega=2 \pi / T$

Problem 5 (15 points)

Consider the Fourier expression for the Dirac delta function: $\delta(\mathrm{x})=\int_{-\infty}^{+\infty} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{kx}} \mathrm{dk}$
(a: 5 points) Prove that $\delta(\mathrm{ax})=\delta(\mathrm{x}) /|\mathrm{a}|(\mathrm{a} \neq 0)$
(b: 10 points) Calculate the double integral $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{kx}} \cos (6 \pi \mathrm{k}) \mathrm{dxdk}$

Problem 6 (20 points)

Assume a function $f(x)$ to have the Fourier transform: $F(k)=\int_{-\infty}^{+\infty} f(x) e^{-i 2 \pi k x} d x$
Consider the Fourier expression of the Dirac Delta function: $\delta(\mathrm{k})=\int_{-\infty}^{+\infty} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{kx}} \mathrm{dx}$
(a: 10 points) Derive the Fourier Transform of $f(x)=\cos \left(9 \pi k_{0} x\right)$
(b: 10 points) Derive the Fourier Transform of $f(x)=\sin ^{2}\left(9 \pi k_{0} x\right)$

Problem 1

We form the series $\sum_{n=1}^{\infty} \frac{x^{n}}{\mathrm{n}!}$, and we show that it is covergent using the ratio test.

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\frac{|x|}{n+1} \rightarrow 0<1 \quad \text { with } x \in(-\infty,+\infty)
$$

Therefore, since the series is convergent we have: $\quad \lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{x^{n}}{\mathrm{n}!}=0$

Problem 2

$$
\begin{aligned}
& \text { If orin }=(-5)^{n} x^{n} / n^{5 / 2} \text {, take the ratiotes } 7 \\
& \lim _{n \rightarrow 00}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty 0} \left\lvert\, \frac{\frac{(-5)^{n+1} x^{n+1}}{(n+1)^{5 / 2}}}{\left.\frac{(-5)^{n} x^{n}}{n^{5 / 2}}|=5| x\left|\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{5 / 2}}=5\right| x \right\rvert\,}\right.
\end{aligned}
$$

- By the ratio test it converges if $5|x|<1$

$$
\Rightarrow \quad(x)<\frac{1}{5}
$$

- For $x=\frac{1}{5}$ we have thereries $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{h^{5 / 2}}$
converges a; alternating series or absolutely convergent p-series with $p=5 / 2>1$ so it is Convergent.

Thus the interval of convergence is

$$
[1 / 5,1 / 5]
$$

Problem 3

CASE III $c^{2}-4 m k<0$ (underdamping) Here the roots are complex:

If we solve the auxiliary equation we have two complex roots:
$r_{1,2}=-(c / 2 m) \pm j \omega \sqrt{1-(c / 2 m \omega)^{2}} \quad\left(k=m \omega^{2}\right) \Rightarrow$
Homogenous solution : $x_{\text {homo }}(t)=e^{-(c / 2 m) t}\left[c_{1} \cos (\widetilde{\omega} t)+c_{2} \sin (\tilde{\omega} t)\right]$
with $\widetilde{\omega}=\omega \sqrt{1-(c / 2 m \omega)^{2}}$
(see book chap. 17.3 \& Nestor site)

We look for a particular solution of the form: $\quad x_{p}(t)=\mathrm{A} \cos (\omega t)+\mathrm{B} \sin (\omega t)$
Look in Nestor the general solution of the AFM-equation of motion with $\omega=\omega_{0}$:
since $\omega=\omega_{o}$ (and as a result $k-m \omega^{2}=0$) we obtain after substition into the equation of motion : $c \omega \mathrm{~B}=\mathrm{F}$ 。 and $\mathrm{A}=0$

$$
\Rightarrow x_{p}(t)=\left(\frac{F_{o}}{c \omega}\right) \sin (\omega t)
$$

Total solution : $x(t)=x_{\text {homo }}(t)+x_{p}(t)$

$$
x(t)=e^{-(c / 2 m) t}\left[c_{1} \cos (\widetilde{\omega} t)+c_{2} \sin (\widetilde{\omega} t)\right]+\left(\frac{F_{0}}{c \omega}\right) \sin (\omega t)
$$

Problem 4
We take the derivatives of $X(t)$

$$
\begin{aligned}
& x^{\prime}(t)=\sum_{n=+\infty}^{+\infty} x_{n}(i n \omega) e^{i n \omega t} \\
& x^{\prime \prime}(t)=\sum_{-\infty}^{+\infty} x_{n}\left[-(n \omega)^{2}\right] e^{i n \omega t}
\end{aligned}
$$

Substitute in to the differential equation

$$
\begin{aligned}
& M \sum_{-\infty}^{+\infty} X_{n}\left[-(n \omega)^{q}\right] e^{i n \omega t}+C \sum_{-\infty}^{+\infty} X_{n}(i n \omega) e^{i n \omega t} \\
& +k \sum_{-\infty}^{+\infty} X_{n} e^{i n \omega t}=\sum_{-\infty}^{+\infty} f_{n} e^{i n \omega t}=D \\
& \sum_{n=-\infty}^{+\infty}\left[X_{n}\left\{\left[k-(n \omega)^{2} M\right]+i n \omega C\right\}-f_{n}\right] e^{i n \omega t}=0 \\
& =P \quad X_{n}\left\{\left[k-M(n \omega)^{2}\right]+i n \omega C\right\}-f_{n}=0 \\
& =p \quad X_{n}=\frac{f_{n}}{\left[T-M(n \omega)^{i}\right]+i n \omega C}
\end{aligned}
$$

Thus the solution has the form

$$
\begin{aligned}
X(t) & =\sum_{n=-\infty}^{+\infty} \frac{F_{n}}{\left[h-M(n \omega)^{2}\right] i n \omega c} e^{i n \omega t} \\
f_{n} & =\frac{1}{T} \int_{-T / 2}^{T / 2} F(t) e^{-i n \omega t} d t
\end{aligned}
$$

Problem 5

(a)

$$
\begin{aligned}
& \delta(o k)=\int_{-\infty}^{+\infty} e^{-i 2 n k a x} d x \\
& \text { I) } \alpha>0 \quad \text { change variables } y=a x \\
& \delta(a k)=\frac{1}{a} \int_{-\infty}^{+\infty} e^{-i 2 n k y} d y=\frac{1}{a} \delta(k) \\
& \text { II) } \alpha<0 \text { change variables } y=a x \\
& \delta(a c k)=\frac{1}{a} \int_{+\infty}^{-\infty} e^{-i 2 n k y} d y=-\frac{1}{a} \delta(k) \\
& \text { Thus we have } \delta(a k)=\delta(k) /|a|
\end{aligned}
$$

(b)

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \mathrm{dx} \int_{-\infty}^{+\infty} \mathrm{dke}^{-\mathrm{x}^{2}} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{kx}} \cos (6 \pi \mathrm{k}) \\
=\int_{-\infty}^{+\infty} \mathrm{dx} \mathrm{e} \mathrm{e}^{-\mathrm{x}^{2}} \int_{-\infty}^{+\infty} \mathrm{dk} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{k}(\mathrm{x})}\left(\mathrm{e}^{\mathrm{i} 2 \pi \mathrm{k}(3)}+\mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{k}(3)}\right) / 2= \\
\int_{-\infty}^{+\infty} \mathrm{dx} \mathrm{e} \mathrm{e}^{-\mathrm{x}^{2}} \int_{-\infty}^{+\infty} \mathrm{dk}\left(\mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{k}(\mathrm{x}-3)}+\mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{k}(\mathrm{x}+3)}\right) / 2
\end{gathered}
$$

From the definition of the delta function we have $\int_{-\infty}^{+\infty} \mathrm{dk} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{k}(\mathrm{x} \pm 3)}=\delta(x \pm 3)$

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \mathrm{dx} \int_{-\infty}^{+\infty} \mathrm{dk} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{kx}} \cos (6 \pi \mathrm{k}) \\
&=(1 / 2)\left\{\int_{-\infty}^{+\infty} \mathrm{dx} \mathrm{e}^{-\mathrm{x}^{2}} \delta(x-3)+\int_{-\infty}^{+\infty} \mathrm{dxe}^{-\mathrm{x}^{2}} \delta(x+3)\right\}=e^{-9}
\end{aligned}
$$

Probblem 6

$$
\begin{aligned}
& \text { (a) } F(k)=\int_{-\infty}^{+\infty} \cos \left(9 n k_{0} x\right) e^{-i \varepsilon \pi k x} d x= \\
& =\frac{1}{2} \int_{-\infty}^{+\infty}\left[e^{-i(9 \pi \pi \cdot x)}+e^{-i(9 \pi \pi \cdot x)}\right] e^{-i q \pi k x} d x= \\
& \begin{array}{l}
=\frac{1}{2}\{\underbrace{\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k-\frac{9 k_{0}}{2}\right) x}}_{\delta\left(k-\frac{q k_{0}}{2}\right)} d x+\underbrace{\int_{-\infty}^{+\infty} e^{i 2 \pi\left(k+\frac{9 k_{0}}{2}\right) x}}_{\delta\left(k+\frac{q k_{0}}{2}\right)} d x\} \\
F(k)=\frac{1}{2}\left[\delta\left(k-\frac{9 k_{0}}{2}\right)\right.
\end{array} \\
& \Rightarrow \quad F(K)=\frac{1}{2}\left[\delta\left(K-\frac{9 k_{0}}{2}\right)+\delta\left(K+\frac{9 K_{0}}{2}\right)\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \quad \sin ^{2}\left(9 \Pi k_{0} x\right)=\left\{1-\cos \left(18 \pi k_{0} x\right)\right\} / 2 \\
& F\left(k_{1}\right)=\int_{\delta=-\infty}^{+\infty} \sin ^{2}\left(9 \pi \pi_{0} x\right) e^{-i \varepsilon \pi k x} d x= \\
& =\frac{1}{2} \underbrace{\int_{-\infty}^{+\infty}}_{\delta(k)} e^{-i 2 \pi k x} d x \\
& -\underbrace{\frac{1}{2} \int_{-\infty}^{+\infty} \cos \left(18 \pi k_{0} x\right) e^{-i \varepsilon n \pi x}}_{\text {From (b) }} d x \\
& \text { replace } k_{0} \text { with } 2 h_{0}
\end{aligned}
$$

Thus we have
we have $\frac{1}{2}\left[\delta\left(K-9 K_{0}\right)+\delta\left(K+9 K_{0}\right)\right]$

$$
F(K)=\frac{1}{2} \delta(K)-\frac{1}{4}\left[\delta\left(k-9 h_{0}\right)+\delta\left(k+9 k_{0}\right)\right]
$$

